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Abstract
We consider Schrödinger equations and Fokker–Planck equations in one
dimension, and study the low-energy asymptotic behavior of the Green function
using a new method. In this method, the coefficient of the expansion in powers
of the wave number can be systematically calculated to arbitrary order, and the
behavior of the remainder term can be analyzed on the basis of an expression in
terms of transmission and reflection coefficients. This method is applicable to
a wide variety of potentials which may not necessarily be finite as x → ±∞.

PACS numbers: 03.65.Nk, 02.30.Hq, 02.50.Ey

1. Introduction

We consider the one-dimensional Schrödinger equation

− d2

dx2
ψ(x) + VS(x)ψ(x) = k2ψ(x), (1.1)

or the equivalent Fokker–Planck equation [1]

− d2

dx2
φ(x) + 2

d

dx
[f (x)φ(x)] = k2φ(x). (1.2)

The Fokker–Planck equation (1.2) describes the diffusion process in an external potential
V (x), which is related to the function f (x) in (1.2) by

f (x) = −1

2

d

dx
V (x), (1.3)

or V (x) = −2
∫

f (x) dx. The correspondence between equations (1.1) and (1.2) is given by
the relations φ(x) = e−V (x)/2ψ(x) and

VS(x) = f 2(x) + f ′(x). (1.4)
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Here we study the Green function for (1.1) or (1.2). Our analysis is based on the expression
of the Green function in terms of reflection coefficients which were derived in [2], and the
method of asymptotic expansion for the reflection coefficients presented in [3]. In this method,
the high- and low-energy expansions can be treated on an equal footing. The high-energy
expansion of the Green function was discussed in a previous paper [4]. In the present paper,
we study the low-energy expansion.

The low-energy asymptotic behavior of the Green function and related functions has been
studied for many years, and various methods have been proposed [5–15]. (Most of these
methods are limited to the cases where

∫∞
−∞ |VS(x)| dx < ∞, although there are some specific

methods for other types of VS.) In this paper, we use a method different from any of these
previous works, and derive simple results for the expansion in powers of the wave number k
to arbitrary order. There have been previously similar attempts at systematically calculating
the expansion of the Green function to arbitrary order [9], but the formulae derived in this
paper are new, and applicable to a larger class of potentials (including the cases where VS(x)

is not finite as x → ±∞). These results are not only of theoretical interest, but also useful for
practical calculations.

We assume that the Fokker–Planck potential V (x) is a real-valued function which is
piecewise continuously differentiable1. We allow V (x) to be either +∞,−∞ or finite as
x → +∞, and similarly for x → −∞, and we require that V (x) behave steadily and
smoothly at spatial infinity. Specifically, we assume that V (x), f (x) and f ′(x) are monotone
for sufficiently large |x|, at both x → +∞ and x → −∞. We do not consider the cases where
V (x) shows oscillatory or other indeterminate behavior as x → ±∞. Note that VS(±∞) are
either finite or +∞. The cases VS(±∞) = −∞ are not considered here, since such VS does
not correspond to an appropriate Fokker–Planck potential.

Our aim in this paper is to derive an expansion of the Green function in powers of k for
Im k � 0. For such an expansion to be possible, it is necessary that V (x) either converge
sufficiently rapidly or diverge sufficiently rapidly as |x| → ±∞. Let us introduce the following
classes of real-valued functions:

F (−)
n =

{
g

∣∣∣∣
∫ a

−∞
(1 + |x|n)|g(x)| dx < ∞ for any finite a

}
, (1.5a)

F (+)
n =

{
g

∣∣∣∣
∫ ∞

a

(1 + |x|n)|g(x)| dx < ∞ for any finite a

}
, (1.5b)

where n is a nonnegative integer. We derive the low-energy expansion under the condition that

V − V1 ∈ F (−)
n or e−V ∈ F (−)

n or eV ∈ F (−)
n (1.6)

with some n and some finite constant V1. (Here V − V1, e−V and eV mean V (x) − V1, e−V (x)

and eV (x) as functions of x.) This is essentially a condition on the behavior of V (x) as
x → −∞, and the three cases in (1.6) correspond to the cases V (−∞) = V1, V (−∞) = +∞
and V (−∞) = −∞ respectively. Similarly, concerning the behavior of V (x) as x → +∞, it
is required that

V − V2 ∈ F (+)
m or e−V ∈ F (+)

m or eV ∈ F (+)
m (1.7)

1 The Fokker–Planck equation (1.2) is well defined even when V (x) has a jump discontinuity and f (x) has a delta
function [1], although the corresponding VS(x) does not make sense in such a case. A delta function in f (x) is
interpreted as jump conditions for φ(x) and φ′(x), in much the same way that a delta function in VS(x) is interpreted
as a jump condition for ψ ′(x). The jump conditions require that eV (x)φ(x) and φ′(x) − 2f (x)φ(x) be continuous.
For example, if f (x) = cδ(x − x0), then φ(x0 + 0) = e2cφ(x0 − 0) and φ′(x0 + 0) = φ′(x0 − 0). If f (x) has a jump,
then VS(x) has a delta function, and ψ ′(x) has a jump. The Green function studied in this paper is meaningful for the
Fokker–Planck equation even when VS does not make sense.
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with some m and some finite constant V2. The three cases in (1.7) correspond to the cases
V (+∞) = V2, V (+∞) = +∞ and V (+∞) = −∞. Since there are three cases for x → −∞
and three cases for x → +∞, there are nine cases in all. But it is sufficient to consider only
the following six cases:

(i) V (−∞) = V1, V (+∞) = V2, (ii) V (−∞) = V1, V (+∞) = +∞,

(iii) V (−∞) = V1, V (+∞) = −∞, (iv) V (−∞) = +∞, V (+∞) = +∞,

(v) V (−∞) = +∞, V (+∞) = −∞, (vi) V (−∞) = −∞, V (+∞) = −∞.

We derive an expansion of the Green function for each of the six cases. (The detailed conditions
for the validity of the expansion to order kN are given by (5.29) and (6.3)).

In section 2 we review the expression of the Green function derived in [2], and make a
comment on its application to the Schrödinger equation. In section 3, we explain the method
of [3] with explicit calculations. Using this, we derive the expressions for the expansion of the
Green function in sections 4 and 5. The remainder term is studied in section 6. In section 7,
we discuss the special case where VS(x) tends to 0 at both x → +∞ and x → −∞. Examples
of calculations are given in section 8.

2. Reflection coefficients and the Green function

Let GS(x, y; k) denote the Green function2 for the Schrödinger equation (1.1), satisfying[
∂2

∂x2
− VS(x) + k2

]
GS(x, y; k) = δ(x − y) (2.1)

with the boundary conditions GS(x, y; k) → 0 as |x − y| → ∞ for Im k > 0. For Im k = 0,
we define3 GS(x, y; k) ≡ limε↓0 GS(x, y; k + iε). Since GS(x, y; k) = GS(y, x; k), without
loss of generality we assume x � y.

In this paper, we use the expression of the Green function in terms of reflection coefficients
for semi-infinite intervals. First, let us define the transmission and reflection coefficients for
finite intervals. For arbitrary a and b (a � b), we define

V̄ (x) ≡
⎧⎨
⎩

V (a) (x < a)

V (x) (a � x � b)

V (b) (b < x),

f̄ (x) ≡ −1

2

d

dx
V̄ (x), (2.2)

and consider the Fokker–Planck equation (1.2) with f (x) replaced by f̄ (x). Since f̄ (x) = 0
for x < a and x > b, this equation has two solutions of the forms

φ1(x) =
{
τ e−ik(x−a) (x < a)

e−ik(x−b) + Rr eik(x−b) (x > b),
(2.3a)

φ2(x) =
{

eik(x−a) + Rl e−ik(x−a) (x < a)

τ eik(x−b) (x > b).
(2.3b)

This defines the transmission coefficient τ , the right reflection coefficient Rr , and the left
reflection coefficient Rl for the interval (a, b). We write them as τ(b, a; k), Rr(b, a; k) and

2 The Green function for the Fokker–Planck equation (1.2) is GF(x, y; k) = e−[V (x)−V (y)]/2GS(x, y; k). When VS
does not make sense (see footnote 1), we need to define GF first as the Green function for the Fokker–Planck equation,
and then define GS = e[V (x)−V (y)]/2GF.
3 This GS(k) becomes infinite where k2 is an eigenvalue of the Schrödinger operator, and where k corresponds to a
half-bound state. Elsewhere, this definition of GS(k) makes sense for real k, even on the continuous spectrum of the
Schrödinger operator.
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Rl(b, a; k). The reflection coefficients for semi-infinite intervals are defined as the limit
a → −∞ of Rr(b, a; k) and the limit b → +∞ of Rl(b, a; k). When k is a real number, it
may happen that these limits do not exist. In such cases, we define

Rr(b,−∞; k) ≡ lim
ε↓0

lim
a→−∞ Rr(b, a; k + iε), (2.4a)

Rl(∞, a; k) ≡ lim
ε↓0

lim
b→+∞

Rl(b, a; k + iε). (2.4b)

In appendix G, it is shown that these limits indeed exist.
Let us define

Sr(x, k) ≡ Rr(x,−∞; k)

1 + Rr(x,−∞; k)
, Sl(x, k) ≡ Rl(∞; x; k)

1 + Rl(∞, x; k)
, (2.5)

S(x, k) ≡ Sr(x, k) + Sl(x, k). (2.6)

Then the Green function can be expressed in terms of this function S as [2]

GS(x, y; k) = 1

2ik
√

[1 − S(x, k)][1 − S(y, k)]
exp

[
ik(x − y) − ik

∫ x

y

S(z, k) dz

]
. (2.7)

The function S(x, k) can also be expressed in terms of reflection coefficients for the
Schrödinger equation. Let us consider the Schrödinger equation with the truncated potential
which is set to be zero outside the interval (a, b)

− d2

dx2
ψ(x) + V̄ S(x)ψ(x) = k2ψ(x), V̄ S(x) ≡

⎧⎨
⎩

0 (x < a)

VS(x) (a � x � b)

0 (b < x).

(2.8)

This equation has two solutions of the forms

ψ1(x) =
{

τ S e−ik(x−a)

e−ik(x−b) + RS
r eik(x−b)

ψ2(x) =
{

eik(x−a) + RS
l e−ik(x−a) (x < a)

τ S eik(x−b) (x > b).
(2.9)

The transmission coefficient τ S(b, a; k) and the reflection coefficients RS
r (b, a; k), RS

l (b, a; k)

are thus defined for the Schrödinger equation. We define RS
r and RS

l for semi-infinite intervals
in the same way as (2.4). It can be shown that Sr and Sl defined by (2.5) are expressed in
terms of RS

r and RS
l as

Sr(x, k) = RS
r (x,−∞)

1 + RS
r (x,−∞)

− f (x)

2ik
, Sl(x, k) = RS

l (∞, x)

1 + RS
l (∞, x)

+
f (x)

2ik
. (2.10)

(See appendix A for a proof.) The f (x) in (2.10) cancels out when we substitute (2.10) into
(2.6), and so S takes the same form as the expression in terms of Rr and Rl

S(x, k) = RS
r (x,−∞)

1 + RS
r (x,−∞)

+
RS

l (∞, x)

1 + RS
l (∞, x)

. (2.11)

(Incidentally, note that the right-hand side of (2.11) can also be written in terms of the Weyl–
Titchmarsh m-function.)
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3. Formulae for generalized reflection coefficients

Let us first make some definition. We define, for n = 1, 2, 3, . . . and −∞ � a � b � +∞,

[σ1, σ2, . . . , σn]ba ≡
∫

· · ·
∫

a�z1�z2�···�zn�b

dz1 · · · dzn exp

[
n∑

j=1

σjV (zj )

]
, (3.1)

where each σj is either +1 or −1. The integrals mean
∫ b

a
dz1

∫ b

z1
dz2

∫ b

z2
dz3 · · · ∫ b

zn−1
dzn. When

V1 ≡ limx→−∞ V (x) is finite, we use the notation4

〈−1, σ2, . . . , σn]b−∞ ≡ [−1, σ2, . . . , σn]b−∞ − e−2V1 [+1, σ2, . . . , σn]b−∞

= 2e−V1

∫
· · ·
∫

−∞�z1�z2�···�zn�b

dz1 · · · dzn sinh[V1 − V (z1)]

× exp

⎡
⎣ n∑

j=2

σjV (zj )

⎤
⎦ . (3.2a)

For n = 1, this means 〈−1]b−∞ ≡ 2e−V1
∫ b

−∞ sinh[V1 − V (z)] dz. Similarly, when V2 ≡
limx→+∞ V (x) is finite,

[σ1, . . . , σn−1,−1〉∞a ≡ [σ1, . . . , σn−1,−1]∞a − e−2V2 [σ1, . . . , σn−1, +1]∞a

= 2e−V2

∫
· · ·
∫

a�z1�z2�···�zn�∞
dz1 · · · dzn sinh[V2 − V (zn)]

× exp

⎡
⎣n−1∑

j=1

σjV (zj )

⎤
⎦ . (3.2b)

The conditions for the existence of these integrals will be discussed later.
In the formalism of [3], we deal with the generalized scattering coefficients, which are

defined with an additional variable W as

R̄r (x, y;W ; k) ≡ Rr(x, y; k) − ξ(x,W)

1 − ξ(x,W)Rr(x, y; k)
, (3.3a)

R̄l(x, y;W ; k) ≡ Rl(x, y; k) +
ξ(x,W)τ 2(x, y; k)

1 − ξ(x,W)Rr(x, y; k)
, (3.3b)

τ̄ (x, y;W ; k) ≡ γ (x,W)τ(x, y; k)

1 − ξ(x,W)Rr(x, y; k)
, (3.3c)

where

ξ(x,W) ≡ tanh
W − V (x)

2
, γ (x,W) ≡

√
1 − ξ 2 = sech

W − V (x)

2
. (3.4)

The original scattering coefficients Rr,Rl and τ are recovered from R̄r , R̄l and τ̄ by setting
W = V (x). We define the operator L, which acts on functions of x and W , as

Lg(x,W) ≡ 2
∫ x

−∞

(
cosh[W − V (z)] + sinh[W − V (z)]

∂

∂W

)
g(z,W) dz. (3.5)

The low-energy expansion of R̄r for semi-infinite intervals was studied in [3]. According
to the formulae derived there, we have

R̄r (x,−∞;W ; k) = r̄0 + ikr̄1 + (ik)2r̄2 + · · · + (ik)N r̄N + ρ̄N , (3.6)

4 The relation with the notation used in [3] is eV1 〈−1, . . .]b−∞ = (±, . . .]b−∞.

5
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where5

r̄0 = − tanh
W − V (−∞)

2
, (3.7)

r̄n(x,W) = Ln[r̄0 + ξ(x,W)] (n � 1), (3.8)

ρ̄N = (ik)N+1
∫ x

−∞

τ̄ 2(x, z;W ; k)

1 − R̄2
l (x, z;W ; k)

r̄ ′
N+1(z, λ̄) dz, (3.9)

r̄ ′
n(x,W) ≡ ∂

∂x
r̄n(x,W), λ̄ ≡ V (z) + log

1 + R̄l(x, z;W ; k)

1 − R̄l(x, z;W ; k)
. (3.10)

The integer N � 0 is arbitrary as long as r̄0, . . . , r̄N are finite. Let us derive the expressions
for r̄n and ρ̄N in terms of the integrals defined by (3.1) and (3.2). We consider the three cases,
(a) V (−∞) = V1 (finite), (b) V (−∞) = +∞ and (c) V (−∞) = −∞. We let the superscripts
a, b and c stand for the cases (a), (b) and (c), respectively.

(a) V (−∞) = V1.

In this case we have

R̄r = r̄a
0 + ikr̄a

1 + (ik)2r̄a
2 + · · · + (ik)N r̄a

N + ρ̄a
N , (3.11)

r̄a
0 = − tanh

W − V1

2
. (3.12)

We can calculate r̄a
n by substituting (3.12) into (3.8). The details of the calculation are

given in appendix B. As a result, we obtain, for n � 1,

r̄a
n (x,W) =

∑
{σ1,...,σn−1}

Dσ1,σ2,...,σn−1(W)〈−1, σ1, σ2, . . . , σn−1]x−∞, (3.13)

where
∑

{σ1,...,σn−1} = ∑
σ1=±1

∑
σ2=±1 · · ·∑σn−1=±1, and

Dσ1,...,σn−1(W) ≡ 2
∞∑

m=1

(−1)m+1mP (m)
σ1,...,σn−1

e(1−m)V1 e(m−�)W , � ≡
n−1∑
i=1

σi, (3.14)

P (m)
σ1,...,σn−1

≡
n−1∏
j=1

[(
m −

j∑
i=1

σi

)
(−σj )

]
. (3.15)

Substituting (3.13) into (3.9), the expression for the remainder term is obtained as

ρ̄a
N = 2(ik)N+1

∑
{σ1,...,σN }

∫ x

−∞
dz

τ̄ 2

1 − R̄2
l

〈−1, σ1, σ2, . . . , σN−1]z−∞ eσNV (z)

×
∞∑

m=1

(−1)m+1mP (m)
σ1,...,σN

e(1−m)V1 e(m−�)V (z)

(
1 + R̄l

1 − R̄l

)m−�

. (3.16)

(Here � = ∑N
i=1 σi .) In (3.16), τ̄ and R̄l stand for τ̄ (x, z;W ; k) and R̄l(x, z;W ; k),

respectively. (If N = 0, the expression 〈−1, . . . , σN−1]z−∞ eσN V (z) in (3.16) is replaced

5 For real k, the integral in (3.9) should be understood as limε↓0 limy→−∞
∫ x

y
with k replaced by k + iε in the

integrand, if necessary.

6



J. Phys. A: Math. Theor. 41 (2008) 315304 T Miyazawa

by 2e−V1 sinh[V1 − V (z)]. Then � = 0 and P (m) = 1.) For each N, the right-hand
side of (3.16) can be written in a compact form without the infinite sum over m (see
appendix B). For example, defining ζ ≡ tanh{[V1 − V (z)]/2}, we can write ρ̄a

0 and ρ̄a
1 as

ρ̄a
0 = 2ik

∫ x

−∞

ζ τ̄ 2

(1 − ζ R̄l)2
dz,

ρ̄a
1 = (2ik)2 e−V1

∫ x

−∞

(1 − ζ 2)(1 + ζ R̄l)τ̄
2

(1 − ζ R̄l)3
〈−1]z−∞ dz.

(3.17)

Equation (3.11) makes sense if and only if r̄a
0 , r̄a

1 , . . . , r̄a
N all exist as finite quantities.

(By construction, the remainder term ρ̄a
N is automatically finite if all r̄a

n are finite, since
R̄r itself is finite.) Since r̄a

n (n � 1) has the form of (3.13), it is necessary that V (x) tend
to V1 fast enough, for otherwise the integrals defined by (3.2) do not exist. We can show
that r̄a

n is finite if V −V1 ∈ F
(−)
n−1 (see appendix C). Therefore, r̄a

0 , r̄a
1 , . . . , r̄a

N are all finite,

and hence the expression (3.11) makes sense, if V − V1 ∈ F
(−)
N−1.

(b) V (−∞) = +∞.

Next, we consider the case V (−∞) = +∞. We write

R̄r = r̄b
0 + ikr̄b

1 + (ik)2r̄b
2 + · · · + (ik)N r̄b

N + ρ̄b
N . (3.18)

Unlike (3.12), the first term r̄b
0 , which is obtained from (3.7), is independent of W

r̄b
0 = 1. (3.19)

The higher order coefficients are obtained by substituting (3.19) into (3.8). The calculation
is easier in this case (see appendix B), and we obtain

r̄b
n (x,W) =

∑
{σ1,...,σn−1}

2P (1)
σ1,σ2,...,σn−1

e(1−�)W [−1, σ1, σ2, . . . , σn−1]x−∞, (3.20)

ρ̄b
N = 2(ik)N+1

∑
{σ1,...,σN }

∫ x

−∞
dz

τ̄ 2

1 − R̄2
l

[−1, σ1, σ2, . . . , σN−1]z−∞ eσN V (z)

×P (1)
σ1,...,σN

e(1−�)V (z)

(
1 + R̄l

1 − R̄l

)1−�

. (3.21)

(As before, � = ∑n−1
i=1 σi in (3.20) and � = ∑N

i=1 σi in (3.21).)
For (3.20) to exist as a finite quantity, it is necessary that e−V (x) tend to 0 fast enough

as x → −∞. It can be shown that r̄b
n is finite if e−V ∈ F

(−)
n−1 (see appendix C). So the

expression (3.18) makes sense if e−V ∈ F
(−)
N−1.

(c) V (−∞) = −∞.

The expressions for the case V (−∞) = −∞ can be obtained in the same way. We have

R̄r = r̄ c
0 + ikr̄c

1 + (ik)2r̄ c
2 + · · · + (ik)N r̄c

N + ρ̄c
N , r̄c

0 = −1, (3.22)

r̄ c
n(x,W) = −

∑
{σ1,...,σn−1}

2P (1)
σ1,σ2,...,σn−1

e−(1−�)W [+1,−σ1,−σ2, . . . ,−σn−1]x−∞. (3.23)

7
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4. The low-energy expansion of Sr

The function Sr defined by (2.5) can be extracted from R̄r as

Sr(x, k) = lim
ξ→−1

ξ + R̄r

1 − ξ 2
= lim

W→−∞
ξ(x,W) + R̄r (x,−∞;W ; k)

1 − [ξ(x,W)]2
. (4.1)

Since ξ(x,W) ∼ −1 + 2eW−V (x) and 1 − [ξ(x,W)]2 ∼ 4eW−V (x) as eW → 0, we may write

Sr(x, k) − 1
2 = 1

4 lim
W→−∞

e−W+V (x)[−1 + R̄r (x,−∞;W ; k)]. (4.2)

(We have moved the 1
2 to the left-hand side for convenience.) As in the last section, we

consider the three cases (a), (b) and (c).

(a) V (−∞) = V1.
Substituting (3.11) into (4.2), we obtain

Sr(x, k) − 1
2 = aR

0 + ikaR
1 + (ik)2aR

2 + · · · + (ik)NaR
N + δaR

N , (4.3)

aR
0 = 1

4 lim
W→−∞

e−W+V (x)
(
r̄a

0 − 1
)
, aR

n = 1
4 lim

W→−∞
e−W+V (x)r̄a

n (n � 1), (4.4)

δaR
N = 1

4 lim
W→−∞

e−W+V (x)ρ̄a
N . (4.5)

From (3.12) and the first equation of (4.4), we have

aR
0 (x) = − 1

2 e−V1 eV (x). (4.6a)

For n � 1, we obtain aR
n by substituting (3.13) into the second equation of (4.4). We can

see from (3.15) that P (m)
σ1,...,σn−1

= 0 if m � �. So m − � � 1 in (3.14). Taking the limit
W → −∞ of e−W r̄a

n amounts to picking out the terms with m = � + 1. This gives

aR
n (x) =

∑
{σ1,...,σn−1}

(−1)�(� + 1)

2
P (�+1)

σ1,σ2,...,σn−1
e−�V1〈−1, σ1, σ2, . . . , σn−1]x−∞ eV (x). (4.6b)

The explicit expressions for the first few n are

aR
0 (x) = − 1

2 e−V1 eV (x), aR
1 (x) = 1

2 〈−]x−∞ eV (x), aR
2 (x) = e−V1〈− +]x−∞ eV (x),

aR
3 (x) = {

3e−2V1〈− + +]x−∞ − 〈− − +]x−∞
}

eV (x),

aR
4 (x) = {

12e−3V1〈− + + +]x−∞ − 2e−V1〈− + − +]x−∞ − 6e−V1〈− − + +]x−∞
}

eV (x),

aR
5 (x) = {

60e−4V1〈− + + + +]x−∞ − 6e−2V1〈− + + − +]x−∞ − 18e−2V1〈− + − + +]x−∞
− 36e−2V1〈− − + + +]x−∞ + 2〈− − + − +]x−∞ + 6〈− − − + +]x−∞

}
eV (x),

(4.7)

where we have used the shorthand notation 〈−]x−∞, 〈−+]x−∞, etc for 〈−1]x−∞, 〈−1, +1]x−∞,
etc.

Obviously
∣∣aR

n

∣∣ < ∞ if V − V1 ∈ F
(−)
n−1. (This is the same as the condition for

∣∣r̄a
n

∣∣ < ∞
discussed in the previous section.) So, equation (4.3) makes sense if V − V1 ∈ F

(−)
N−1.

(b) V (−∞) = +∞.
In this case, we substitute (3.18) into (4.2). This leads us to consider the limits

bR
0 = 1

4 lim
W→−∞

e−W+V (x)
(
r̄b

0 − 1
)
, bR

n = 1
4 lim

W→−∞
e−W+V (x)r̄b

n (n � 1), (4.8)

δbR
N = 1

4 lim
W→−∞

e−W+V (x)ρ̄b
N . (4.9)

8



J. Phys. A: Math. Theor. 41 (2008) 315304 T Miyazawa

From (3.19) and (4.8), we have bR
0 = 0. For n � 1, we can see that only the terms with � = 0

in (3.20) survive in the limit of (4.8). Since � is an odd number for even n, it follows that
bR

n = 0 for any even n. So, in this case we have the expression

Sr(x, k) − 1
2 = ikbR

1 + (ik)3bR
3 + (ik)5bR

5 + · · · + (ik)2M+1bR
2M+1 + δbR

2M+1, (4.10)

which has only odd powers of k. Since δbR
n−1 = (ik)nbR

n + δbR
n , we have δbR

n = δbR
n−1 for even n.

The coefficients bR
n are easily obtained as

bR
n (x) = 1

2

∑
{σ1,...,σn−1}

�=0

P (1)
σ1,σ2,...,σn−1

[−1, σ1, σ2, . . . , σn−1]x−∞ eV (x), (4.11)

where the sum is taken with the constraint � = ∑n−1
i=1 σi = 0. Using the shorthand notation

[−]x−∞, etc for [−1]x−∞, etc, we can explicitly write, for the first few n,

bR
1 (x) = 1

2 [−]x−∞ eV (x), bR
3 (x) = −[− − +]x−∞ eV (x),

bR
5 (x) = {

6[− − − + +]x−∞ + 2[− − + − +]x−∞
}

eV (x),

bR
7 (x) = −{72[− − − − + + +]x−∞ + 36[− − − + − + +]x−∞ + 12[− − − + + − +]x−∞

+ 12[− − + − − + +]x−∞ + 4[− − + − + − +]x−∞
}

eV (x).

(4.12)

Note that (4.12) can be formally obtained from (4.7) by letting V1 → +∞ and 〈− · · ·]x−∞ →
[− · · ·]x−∞.

It is obvious that
∣∣bR

n

∣∣ < ∞ if e−V ∈ F
(−)
n−1, which is the same as the condition for∣∣r̄b

n

∣∣ < ∞ studied in the previous section. Therefore, (4.10) makes sense if e−V ∈ F
(−)
2M .

(c) V (−∞) = −∞.
In this case, we cannot obtain the expansion of Sr − 1

2 by substituting (3.22) into (4.2), since

limW→−∞ e−W
(
r̄ c

0 − 1
)

is not finite. Instead, the expansion of
(
Sr − 1

2

)−1
can be obtained in

the same way as in case (b). As shown in appendix D, we have[
Sr(x, k) − 1

2

]−1 = 4
[
ikb̃R

1 + (ik)3b̃R
3 + (ik)5b̃R

5 + · · · + (ik)2M+1b̃R
2M+1 + δb̃R

2M+1

]
, (4.13)

where b̃R
n and δ

b̃,R
N are the quantities obtained form bR

n and δbR
N by changing the sign of the

potential V . Namely,

b̃R
n (x) = 1

2

∑
{σ1,...,σn−1}

�=0

P (1)
σ1,σ2,...,σn−1

[+1,−σ1,−σ2, . . . ,−σn−1]x−∞ e−V (x), (4.14)

or, explicitly, b̃R
1 (x) = 1

2 [+]x−∞ e−V (x), b̃R
3 (x) = −[+ + −]x−∞ e−V (x), etc. From (4.13), the

expansion of Sr − 1
2 is obtained as

Sr(x, k) − 1

2
= (ik)−1γ R

−1 + ikγ R
1 + (ik)3γ R

3 + · · · + (ik)2M+1γ R
2M+1 + δ

γ R
2M+1, (4.15)

γ R
−1 = 1

4b̃R
1

, γ R
1 = − b̃R

3

4
(
b̃R

1

)2 , γ R
3 = 1

4
(
b̃R

1

)3

[(
b̃R

3

)2 − b̃R
5 b̃R

1

]
, etc. (4.16)

Obviously γ R
n = 0 and δ

γ R
n = δ

γ R
n−1 for even n.

We know that
∣∣b̃R

n

∣∣ < ∞ if eV ∈ F
(−)
n−1. (This is obtained from the condition for

∣∣bR
n

∣∣ < ∞
by changing the sign of V .) Since γ R

n is expressed in terms of b̃R
m with m � n + 2, we can see

that
∣∣γ R

n

∣∣ < ∞ if eV ∈ F
(−)
n+1 , and hence that (4.15) makes sense if eV ∈ F

(−)
2M+2.

9
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The expressions for Sl can be obtained in the parallel way. We consider the three cases,
where V (+∞) is finite (= V2), +∞ or −∞. The results are as follows:

(a) If V (+∞) = V2,

Sl(x, k) − 1

2
= aL

0 + ikaL
1 + (ik)2aL

2 + · · · + (ik)NaL
N + δaL

N , (4.17)

aL
0 (x) = −1

2
e−V2 eV (x), (4.18a)

aL
n (x) =

∑
{σ1,...,σn−1}

(−1)�(� + 1)

2
P (�+1)

σ1,σ2,...,σn−1
e−�V2 [σn−1, . . . , σ2, σ1,−1〉∞x eV (x). (4.18b)

(b) If V (+∞) = +∞,

Sl(x, k) − 1

2
= ikbL

1 + (ik)3bL
3 + (ik)5bL

5 + · · · + (ik)2M+1bL
2M+1 + δbL

2M+1 (4.19)

bL
n (x) = 1

2

∑
{σ1,...,σn−1}

�=0

P (1)
σ1,σ2,...,σn−1

[σn−1, . . . , σ2, σ1,−1]∞x eV (x). (4.20)

(c) If V (+∞) = −∞,[
Sl(x, k) − 1

2

]−1

= 4
[
ikb̃L

1 + (ik)3b̃L
3 + (ik)5b̃L

5 + · · · + (ik)2M+1b̃L
2M+1 + δb̃L

2M+1

]
, (4.21)

Sl(x, k) − 1

2
= (ik)−1γ L

−1 + ikγ L
1 + (ik)3γ L

3 + · · · + (ik)2M+1γ L
2M+1 + δ

γ L
2M+1, (4.22)

b̃L
n (x) = 1

2

∑
{σ1,...,σn−1}

�=0

P (1)
σ1,σ2,...,σn−1

[−σn−1, . . . ,−σ2,−σ1, +1]∞x e−V (x). (4.23)

5. Low-energy expansion of the Green function

The expansion of the function S (equation (2.6)) is obtained by adding the expressions for Sr

(equation (4.3), (4.10) or (4.15)) and Sl ((4.17), (4.19) or (4.22)). We can derive the expansion
of GS by substituting this into (2.7). We study the six cases listed in the introduction.

Case (i): V (−∞) = V1, V (+∞) = V2.

Adding (4.3) and (4.17) together, we obtain the expansion of S − 1 as

S − 1 = s0 + iks1 + (ik)2s2 + · · · + (ik)NsN + δN, (5.1)

sn = aR
n + aL

n , δN = δaR
N + δaL

N . (5.2)

Substituting (5.1) into (2.7) we can derive the expansion

GS(x, y; k) = (ik)−1g−1 + g0 + ikg1 + (ik)2g2 + · · · + (ik)NgN + �N, (5.3)

10
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g−1 = 1

2
√

s0(x)s0(y)
, g0 =

(
q1(x, y) − s1(x)

2s0(x)
− s1(y)

2s0(y)

)
g−1, etc, (5.4)

where we have defined

qn(x, y) ≡ −
∫ x

y

sn−1(z) dz. (5.5)

(The remainder term �N will be discussed in the following section.) From (4.6), (4.18), (5.2)
and (5.4), we obtain the explicit expressions for g−1 and g1,

g−1 = e−[V (x)+V (y)]/2

e−V1 + e−V2
, (5.6a)

g0 = e−[V (x)+V (y)]/2

2

{
1

(e−V1 + e−V2)2

(〈−]x−∞ + [−〉∞x + 〈−]y−∞ + [−〉∞y
)

+ [+]xy

}
, (5.6b)

which are the same as the expressions derived in [17] by a different method.

Case (ii): V (−∞) = V1, V (+∞) = +∞.

In this case, the expansion of S − 1 has the same form as (5.1), with

sn = aR
n + bL

n , δn = δaR
n + δbL

n . (5.7)

Since bR
n = 0 and δbR

n = δbR
n−1 for even n, equations (5.7) read sn = aR

n and δn = δaR
n + δbL

n−1 for
even n. The expansion of GS, too, has the same form as (5.3) with (5.4). Substituting (4.6)
and (4.20), we obtain

g−1 = e−[V (x)+V (y)]/2 eV1 , (5.8a)

g0 = e−[V (x)+V (y)]/2

2

{
e2V1

(〈−]x−∞ + [−]∞x + 〈−]y−∞ + [−]∞y
)

+ [+]xy

}
. (5.8b)

Formally, (5.8) can also be obtained from (5.6) by letting V2 → ∞ and [−〉∞a → [−]∞a .

Case (iii): V (−∞) = V1, V (+∞) = −∞.

When V (+∞) = −∞, the expansion of S − 1, which is obtained from (4.3) and (4.22),
contains a term of order 1/k

S − 1 = (ik)−1s−1 + s0 + iks1 + · · · + (ik)NsN + δN, (5.9)

s−1 = γ L
−1, sn = aR

n + γ L
n (n � 0), δn = δaR

n + δγ L
n . (5.10)

When n is even, sn = aR
n since γ L

n = 0. Corresponding to (5.9), the expansion of GS lacks the
term of order 1/k which was present in (5.3)

GS(x, y; k) = g0 + ikg1 + (ik)2g2 + · · · + (ik)NgN + �N, (5.11)

g0 = −exp[q0(x, y)]

2
√

s−1(x)s−1(y)
, g1 =

(
q1(x, y) − s0(x)

2s−1(x)
− s0(y)

2s−1(y)

)
g0, etc, (5.12)

where q0 and q1 are defined by (5.5). For n = −1 and 0, we have s−1(x) = eV (x)
/(

2[+]∞x
)

and s0(x) = −eV (x)−V1/2. Note that d
dz

[+]∞z = −eV (z). Therefore,

exp[q0(x, y)] = exp

[
1

2

∫ x

y

(
d

dz
log[+]∞z

)
dz

]
=
√

[+]∞x
[+]∞y

. (5.13)

11
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Also using q1(x, y) = − ∫ x

y
s0(z) dz = 1

2 e−V1 [+]xy , from (5.12) we obtain

g0 = −e−[V (x)+V (y)]/2[+]∞x , g1 = −e−[V (x)+V (y)]/2 e−V1 [+]∞x [+]∞y . (5.14)

Case (iv): V (−∞) = +∞, V (+∞) = +∞.

When both V (±∞) are +∞, the expansion of S − 1 has only odd powers of k

S − 1 = iks1 + (ik)3s3 + (ik)5s5 + · · · + (ik)2M+1s2M+1 + δ2M+1, (5.15)

sn = bR
n + bL

n , δn = δbR
n + δbL

n . (5.16)

(Note that sn = 0 and δn = δn−1 for any even n.) The corresponding expression for GS begins
with the term of order 1/k2, and has only even powers of k

GS(x, y; k) = (ik)−2g−2 + g0 + (ik)2g2 + (ik)4g4 + · · · + (ik)2Mg2M + �2M, (5.17)

g−2 = −1

2
√

s1(x)s1(y)
, g0 =

(
q2(x, y) − s3(x)

2s1(x)
− s3(y)

2s1(y)

)
g−2, etc. (5.18)

(In deriving (5.18) we choose the branch of the square root in (2.7) so that
√−k2 = −ik.) For

n = 1 and n = 3, the first equation of (5.16) reads

s1(x) = 1
2 eV (x)[−]∞−∞, s3(x) = −eV (x)

(
[− − +]x−∞ + [+ − −]∞x

)
. (5.19)

(Note that [−]x−∞ + [−]∞x = [−]∞−∞.) Hence q2(x, y) = − 1
2 [+]xy[−]∞−∞. Substituting these

expressions into (5.18) yields

g−2 = −e−[V (x)+V (y)]/2 1

[−]∞−∞
, (5.20a)

g0 = e−[V (x)+V (y)]/2

(
− [− − +]x−∞ + [+ − −]∞x + [− − +]y−∞+ [+ − −]∞y(

[−]∞−∞
)2 +

[+]xy
2

)
. (5.20b)

Case (v): V (−∞) = +∞, V (+∞) = −∞.

In this case, too, the expansion of S − 1 has only odd powers of k, but now the series begins
with the term of order 1/k

S − 1 = (ik)−1s−1 + iks1 + (ik)3s3 + · · · + (ik)2M+1s2M+1 + δ2M+1, (5.21)

s−1 = γ L
−1, sn = bR

n + γ L
n (n � 0), δn = δbR

n + δγ L
n . (5.22)

(For even n, we have sn = 0 and δn = δn−1.) Correspondingly, the expansion of GS begins
with the term of order k0

GS(x, y; k) = g0 + (ik)2g2 + (ik)4g4 + · · · + (ik)2Mg2M + �2M, (5.23)

g0 = − exp[q0(x, y)]

2
√

s−1(x)s−1(y)
, g2 =

(
q2(x, y) − s1(x)

2s−1(x)
− s1(y)

2s−1(y)

)
g0, etc. (5.24)

We have s−1(x) = eV (x)
/(

2[+]∞x
)

and s1(x) = eV (x)
{
[− + +]∞x

/(
[+]∞x

)2
+ 1

2 [−]x−∞
}
. Since

s−1 is the same as in case (iii), obviously g0 is the same as (5.14), i.e.,

g0 = −e−[V (x)+V (y)]/2[+]∞x . (5.25a)

12
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To calculate q2, we use
∫ x

y
eV (z)

{
[− + +]∞z

/(
[+]∞z

)2}
dz = ∫ x

y
[− + +]∞z

d
dz

(
1/[+]∞z

)
dz and

integrate by parts. Substituting this and s−1, s1 into the second equation of (5.24) gives

g2 = e−[V (x)+V (y)]/2
{(

[−]x−∞[+]∞x + [−]y−∞[+]xy + [−+]xy
)
[+]∞x + 2[− + +]∞x

}
. (5.25b)

Case (vi): V (−∞) = −∞, V (+∞) = −∞.

In this case, the expansion of S − 1 has the same form as (5.21), where

sn = γ R
n + γ L

n , δn = δγ R
n + δγ L

n . (5.26)

(As before, sn = 0 and δn = δn−1 for even n.) The expansion of GS is given by the same
expression as (5.23) with (5.24). Substituting s−1(x) = eV (x)[+]∞−∞

/(
2[+]x−∞[+]∞x

)
and

exp[q0(x, y)] =
√

[+]y−∞[+]∞x
/ (

[+]x−∞[+]∞y
)
, we obtain

g0 = −e−[V (x)+V (y)]/2 [+]y−∞[+]∞x
[+]∞−∞

. (5.27)

(The expression for g2 does not become simpler than (5.24) in this case.)

Now we have derived the expansion of GS for each of the six cases. To summarize, the
expansion has the form of (5.3) (in cases (i) and (ii)), (5.11) (in case (iii)), (5.17) (in case (iv))
or (5.23) (in cases (v) and (vi)). These expressions make sense if and only if |gn| < ∞ for any
n � N (N ≡ 2M for (5.17) and (5.23)). The remainder term �N is finite if all gn are finite.
As mentioned in the previous section, we know that∣∣aR

n

∣∣ < ∞ if V − V1 ∈ F
(−)
n−1,

∣∣aL
n

∣∣ < ∞ if V − V2 ∈ F
(+)
n−1,∣∣bR

n

∣∣ < ∞ if e−V ∈ F
(−)
n−1,

∣∣bL
n

∣∣ < ∞ if e−V ∈ F
(+)
n−1,∣∣γ R

n

∣∣ < ∞ if eV ∈ F
(−)
n+1 ,

∣∣γ L
n

∣∣ < ∞ if eV ∈ F
(+)
n+1.

(5.28)

From (5.28), we can derive the sufficient conditions for |gN | < ∞. These conditions are also
sufficient for |gn| < ∞ (n < N). As a result, we find that

in case (i), equation (5.3) makes sense if V − V1 ∈ F
(−)
N and V − V2 ∈ F

(+)
N ,

in case (ii), equation (5.3) makes sense if V − V1 ∈ F
(−)
N and e−V ∈ F

(+)
N ,

in case (iii), equation (5.11) makes sense if V − V1 ∈ F
(−)
N−2 and eV ∈ F

(+)
N ,

in case (iv) equation (5.17) makes sense if e−V ∈ F
(−)
2M+2 and e−V ∈ F

(+)
2M+2,

in case (v), equation (5.23) makes sense if e−V ∈ F
(−)
2M−2 and eV ∈ F

(+)
2M ,

in case (vi), equation (5.23) makes sense if eV ∈ F
(−)
2M and eV ∈ F

(+)
2M .

(5.29)

(The conditions involving F (±)
n with n < 0 are interpreted as automatically satisfied.)

6. Behavior of ∆N as k → 0

The expansion of GS to order kN is meaningful as a low-energy expansion only if the remainder
term satisfies �N = o(kN) as k → 0. In this section, we study the conditions for this to hold.
Substituting the expansion of S − 1 into (2.7), we can easily see that

in cases (i) and (ii), �n−1 = o(kn−1) if δn = o(kn) (n � 0), (6.1a)

in cases (iii), (v) and (vi), �n+1 = o(kn+1) if δn = o(kn) (n � −1), (6.1b)

in case (iv), �n−3 = o(kn−3) if δn = o(kn) (n � 1). (6.1c)

13
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(We have used the fact that the integral in (2.7) and the limit k → 0 are interchangeable, as
can be easily shown.) By definition, δn is equal to (i) δaR

n + δaL
n , (ii) δaR

n + δbL
n , (iii) δaR

n + δ
γ L
n ,

(iv) δbR
n + δbL

n , (v) δbR
n + δ

γ L
n or (vi) δ

γ R
n + δ

γ L
n , according to the six cases. So, the behavior of

�N as k → 0 can be known from the behavior of δaR
n , δbR

n , etc.
The small-k behavior of δaR

n , δbR
n , etc can be studied using (3.16) and (3.21). The detailed

analysis is given in appendix E. The result is

δaR
n = o(kn) if V − V1 ∈ F

(−)
n−1, δaL

n = o(kn) if V − V2 ∈ F
(+)
n−1, (6.2a)

δbR
n = o(kn) if e−V ∈ F

(−)
n−1, δbL

n = o(kn) if e−V ∈ F
(+)
n−1, (6.2b)

δ
γ R
n−1 = o(kn−1) if eV ∈ F (−)

n , δ
γ L
n−1 = o(kn−1) if eV ∈ F (+)

n . (6.2c)

(Here n � 0. For n = 0, the conditions involving F
(±)
n−1 should be interpreted as automatically

satisfied.) From (6.1) and (6.2), we can conclude that

in case (i), �N = o(kN) if V − V1 ∈ F
(−)
N and V − V2 ∈ F

(+)
N (N � −1),

in case (ii), �N = o(kN) if V − V1 ∈ F
(−)
N and e−V ∈ F

(+)
N (N � −1),

in case (iii), �N = o(kN) if V − V1 ∈ F
(−)
N−2 and eV ∈ F

(+)
N (N � 0),

in case (iv), �N = o(kN) if e−V ∈ F
(−)
N+2 and e−V ∈ F

(+)
N+2 (N � −2),

in case (v), �N = o(kN) if e−V ∈ F
(−)
N−2 and eV ∈ F

(+)
N (N � 0),

in case (vi), �N = o(kN) if eV ∈ F
(−)
N and eV ∈ F

(+)
N (N � 0).

(6.3)

The conditions in (6.3) are exactly the same as the conditions in (5.29) (where N = 2M for
cases (vi), (v), (vi)). Therefore, the expansion to order kN makes sense and is valid as an
asymptotic expansion if these conditions are satisfied.

The marginal cases for the conditions of (6.3) are V (z) ∼ A + β/|z|α (where α, β are
constants, and A = V1 or V2) and V (z) ∼ α log|z| as z → −∞ or +∞. These cases
correspond to VS(z) ∼ C/|z|2+α and VS(z) ∼ l(l + 1)/|z|2 with l ≡ α/2, respectively. Let α

be a non-integer such that 0 � n < α < n + 1. Then, as shown in appendix E,

δaR
n ∼ Ckα (k → 0) if V (z) ∼ V1 +

β

|z|α (z → −∞), (6.4a)

δbR
n ∼ Ckα (k → 0) if V (z) ∼ α log|z| (z → −∞), (6.4b)

and similarly for δaL
n and δbL

n (where C is a certain constant). The behavior of �N for the
marginal cases can be easily known from (6.4) (and the corresponding expressions for δaL

n and
δbL
n ). For example, if V −V1 ∈ F

(−)
N+1 and V (z) ∼ α log z as z → +∞ with N +1 < α < N +2,

then �N ∼ Ckα−1 as k → 0 (see example 5 of section 8).

7. Schrödinger equation with a potential vanishing at x → ±∞
Suppose that VS(x) is given, and that f (x) and V (x) are yet unknown. Let ψ0(x) be a solution
of (1.1) with k = 0. Then a function f satisfying (1.4) is obtained from ψ0 as

f (x) = d

dx
log ψ0(x). (7.1)

The Schrödinger equation (1.1) is equivalent to the Fokker–Planck equation (1.2) with (7.1),
where φ is related to ψ by φ(x) = ψ0(x)ψ(x). The Fokker–Planck potential is expressed

14
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in terms of ψ0 as V (x) = −2 log ψ0(x). (In order to make V (x) finite for any finite x, the
function ψ0 needs to satisfy ψ0(x) > 0 for any finite x.) A given Schrödinger equation can be
thus transformed into a Fokker–Planck equation.

In our formalism, VS(x) need not be zero (or even finite) as x → ±∞. But here we study
a particular feature of the case where VS(x) tends to zero at both x → +∞ and x → −∞.
For simplicity, we assume that there are no bound states.

Now we assume VS(±∞) = 0. Let ψ+
0 (x) and ψ−

0 (x) denote the solutions of (1.1) with
k = 0, such that ψ+

0 (x) → 1 as x → +∞ and ψ−
0 (x) → 1 as x → −∞. We define

V±(x) ≡ −2 log ψ±
0 (x), f±(x) ≡ d

dx
log ψ±

0 (x). (7.2)

Obviously, V+(x) → 0 as x → +∞ and V−(x) → 0 as x → −∞. If ψ+
0 and ψ−

0 are
linearly independent, then f+ �= f−. By using f+ or f− in (1.2) in place of f , we have
two different Fokker–Planck equations equivalent to (1.1). (As a matter of fact, we can take
any linear combination of ψ+

0 and ψ−
0 , so there are an infinite number of equivalent Fokker–

Planck equations.) If ψ+
0 and ψ−

0 are linearly dependent, then f+ = f−. In the conventional
terminology of scattering theory, the cases f+ �= f− and f+ = f− are referred to as ‘generic
and ‘exceptional’, respectively. In the exceptional case, V−(x) (= V+(x) + constant) is finite
at both x → +∞ and x → −∞. Thus, the exceptional case corresponds to case (i) in our
classification in section 5. In the generic case, on the other hand, V−(x) and V+(x) tend
to −∞ as x → +∞ and x → −∞, respectively. So, the generic case is included in our
case (iii).

There is no particular difficulty in dealing with the exceptional case by our method; we can
directly use the results of section 5 for case (i). On the contrary, special care is needed for the
generic case. In the generic case, ψ−

0 (x) grows linearly, and so V−(x) diverges logarithmically,
as x → +∞. We can see that eV− /∈ F

(+)
1 since eV− behaves like 1/x2 as x → +∞. The

criterion (6.3) for case (iii) indicates that the expansion to order kN may not be valid for N � 1
if we use V− in place of V . (The situation is the same for V+, since eV+ /∈ F

(−)
1 .) Fortunately,

we can avoid this difficulty by using both V+ and V−, as explained below. The idea is to use
V− for Sr , and V+ for Sl .

The relations (2.10) hold for both V+ and V−, so

RS
r

1 + RS
r

= S+
r +

f+

2ik
= S−

r +
f−
2ik

,
RS

l

1 + RS
l

= S+
l − f+

2ik
= S−

l − f−
2ik

. (7.3)

Here S±
r and S±

l denote Sr and Sl with V± in place of V . From (2.11) and (7.3) we have

S(x, k) = 1

2ik
[f−(x) − f+(x)] + S−

r (x, k) + S+
l (x, k). (7.4)

The expansion of S − 1 takes the form of (5.9), where, instead of (5.10),

s−1 = 1
2 [f−(x) − f+(x)], sn = aR−

n + aL+
n (n � 0), δN = δaR−

N + δbR+
N , (7.5)

where aR−
n and aL+

n are defined by (4.6) and (4.18) with V− and V+, respectively, in place
of V (similarly for δaR−

N and δbR+
N ). In particular, s0 = − 1

2 (eV−(x) + eV+(x)). (Note that
V1 = V−(−∞) = 0 and V2 = V+(+∞) = 0.) Substituting (7.5) into (5.12) gives

g0 = −exp{[V−(x) − V+(x) − V−(y) + V+(y)]/4}√
[f−(x) − f+(x)][f−(y) − f+(y)]

, (7.6a)

g1 = 1

2

[∫ x

y

(eV−(z) + eV+(z)) dz +
eV−(x) + eV+(x)

f−(x) − f+(x)
+

eV−(y) + eV+(y)

f−(y) − f+(y)

]
g0. (7.6b)

The higher order coefficients can be calculated without any difficulty by using (7.5). Now
(5.11) makes sense, and �N = o(kN) as k → 0, if V− ∈ F

(−)
N−2 and V+ ∈ F

(+)
N−2.
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Figure 1. The Green function GS(x, y; k) for the potential V (z) = z2 (example 1), (a) plotted
as a function of k, with x = 1.2, y = 1; (b) plotted as a function of x, with k = 1, y = 0
(here GS is real). In all the graphs, solid lines are the exact values. Here the dashed lines show∑M

m=−1(ik)2mg2m. (N ≡ 2M = −2, 0, 2 in (a), and N = −2, 0 in (b).) In (a), the curve labeled
as ‘N = 2 (modified)’ is the plot of (8.2).

8. Examples

To demonstrate the calculation of the expansion, let us consider some simple potentials for
which the exact form of the Green function is available. (For examples 1–4, the expressions
for the exact Green function can be found in section 11 of [4]. Note that G ≡ 2ikGS in [4].)
In all the graphs, k is taken to be a real number (k � 0).

Example 1.

V (z) = z2, VS(z) = z2 − 1.

The first example is a parabolic potential. The corresponding VS is also parabolic. From
(5.16), (4.11) and (4.20), we obtain the first two coefficients of (5.15) as

s1(x) =
√

π

2
ex2

, s3(x) = −π

8
ex2

[∫ ∞

x

ez2
(erfc z)2dz +

∫ ∞

−x

ez2
(erfc z)2dz

]
, (8.1)

and from (5.5) we have q2(x, y) = (π/4)(erfi y − erfi x). (Here erfc z = 1 − erf z =
(2/

√
π)
∫∞
z

e−w2
dw, and erfi z = −i erf(iz).) The expansion of the Green function has the

form of (5.17), where g−2 and g0 are obtained by substituting the above expressions into
(5.18). The approximation to this order, GS � (ik)−2g−2 + g0, is plotted in figure 1 along
with the exact value. (The exact expression of the Green function is given by equation (11.6)
of [4]. Note that this GS takes a real value when k is real.) Higher order coefficients of the
expansion of GS can be obtained in the same way. Although we omit here the expressions for
s5 and g2, the result of the calculation up to order k2 is also shown in figure 1(a).

The exact GS(k) has poles at k = ±√
2n (n = 0, 1, 2, . . .), corresponding to the

eigenvalues of the Schrödinger operator (k2 = 2n). From the information of g0 and g2,
we can approximately reproduce the poles nearest to the origin as

GS � 1

(ik)2
g−2 +

g0

1 − (ik)2(g2/g0)
. (8.2)

This is a better approximation than GS � (ik)−2g−2 + g0 + (ik)2g2 (see figure 1(a)).
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Figure 2. The real and imaginary parts of GS(x, y; k) for the potential V (z) = 2 log cosh z

(example 2), plotted as functions of k, with x = 2 and y = 0. The dashed lines show∑M
m=−1(ik)2mg2m. (N ≡ 2M = −2, 0, 2.) The dotted lines are the result of the high-energy

approximation (see [4]) obtained by expanding log GS in powers of 1/k to order 1/k2. (For k > 1,
the curves of the high-energy approximation almost coincide with the exact curves.)

Example 2.

V (z) = 2 log cosh z, VS(z) = 1 − 2sech2z.

In this example, V (z) diverges to +∞ and VS(z) tends to 1 as z → ±∞. As in the previous
example, the expansion of GS has the form of (5.17). From (5.16), (4.11) and (4.20), we can
easily calculate

s1(x) = cosh2 x, s3(x) = − 1
2 cosh 2x cosh2 x, (8.3)

and q2(x, y) = 1
2 (y − x) + 1

4 (sinh 2y − sinh 2x). By substituting them into (5.18), we obtain
g−2 and g0. The higher order coefficients can be similarly calculated. The results are shown
in figure 2. (For the expression of the exact GS, see equation (11.15) of [4].)

This GS has branch point singularities at k = ±1, and Im GS = 0 for |k| � 1. The
series

∑∞
m=−1(ik)2mg2m is convergent for |k| < 1. For |k| > 1, we can use the high-energy

expansion (discussed in [4]) to calculate GS with very good precision (see figure 2).

Example 3.

V (z) = ez, VS(z) = 1
4 e2z − 1

2 ez.

This exponential potential belongs to case (ii) of section 5. The expansions of S and GS have
the form of (5.1) and (5.3), respectively. From (5.7), (4.6) and (4.20) we have

s0(z) = −1

2
exp(ez), s1(z) = −1

2
exp(ez)[Ei(−ez) + 2Shi(ez)],

s2(z) = −2 exp(ez)

∫ z

−∞
exp(ew)Shi(ew) dw,

(8.4)

and so on, where Ei and Shi denote the exponential integral function and the hyperbolic
integral function, respectively. (Ei(z) = − ∫∞

−z
(1/t) e−t dt, Shi(z) = ∫ z

0 (1/t) sinh t dt .) We
obtain g−1, g0, etc by substituting (8.4) into (5.4), etc. The results of the calculation to order
k2 are shown in figure 3. (See equation (11.12) of [4] for the exact form of GS.)

With fixed y and k, the function GS(x, y; k) rapidly falls off to zero as x → +∞, and
oscillates as x → −∞ (recall that GS(x, y) = GS(y, x). Since we have been assuming
y � x, the Green function for x < y is GS(y, x) with our expressions.) As can be seen from
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Figure 3. The real and imaginary parts of GS(x, y; k) for the potential V (z) = ez (example 3),
(a) plotted as functions of k, with x = 0.5 and y = 0; (b) plotted as functions of x, with k = 0.4
and y = 0. The dashed lines show

∑N
n=−1(ik)ngn, where N = 2 in (a) and N = 0, 2 in (b). (Since

k is real, N = 0 and N = 2 are the same as N = −1 and N = 1, respectively, for the imaginary
part.) In (c), the same graphs as (b) (GS(x) with k = 0.4, y = 0) are drawn with a larger scope.
The dashed lines in (c) are the plots of (8.5) with N = 0 and 2. (They are plotted only for x < 0.)

figure 3(b), the truncated series (ik)−1g−1 + g0 + · · · + (ik)NgN gives a good approximation
of GS as a function of x for x > y. (In figure 3(b), the approximation with N = 2 almost
coincides with the exact value for x > y.) However, this approximation is not effective when
x < y and y − x is large. To cope with the oscillatory behavior of GS as x → −∞, it is better
to truncate the expansion of log GS (rather than GS itself), and then exponentiate it. Namely,

GS � (ik)−1g−1 exp[ikp1 + (ik)2p2 + · · · + (ik)N+1pN+1], (8.5)

where {p1, . . . , pN+1} can be expressed in terms of {g−1, . . . , gN } as p1 = g0/g−1, p2 =
(g1/g−1) − 1

2 (g0/g−1)
2, etc. As shown in figure 3(c), this gives a good approximation in the

region where −x is large.
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Figure 4. The real and imaginary parts of GS(x, y; k) for the potential of example 4, plotted as
functions of k, with x = 1 and y = −0.5. The dashed line is the plot of g0 + (ik)2g2. The falloff
of |Im GS| as k → 0 is faster than any power of k.

Example 4.

V (z) =
{√

1 − z − 1

−√
1 + z + 1,

VS(z) =
{

1
16 (1 − z)−1 + 1

8 (1 − z)−3/2 (z < 0)

1
16 (1 + z)−1 − 1

8 (1 + z)−3/2 (z > 0).

This example belongs to case (v) of section 5. Here V (z) slowly diverges to ∓∞ as z → ±∞,
and VS(z) tends to zero like |z|−1. In this case, it is easier to use (5.25a) and (5.25b) directly
for the calculation of g0 and g2. Assuming that y < 0 < x, we obtain

g0 = −2 exp

(
1 −

√
1 + x

2
−

√
1 − y

2

)
(1 +

√
1 + x), (8.6a)

g2 = 4

3
exp

(
1 −

√
1 + x

2
−

√
1 − y

2

)
[118 + 37x + 2x2 − 3y

+ (94 + 11x − 3y)
√

1 + x + 2(1 − y)(1 +
√

1 + x)
√

1 − y]. (8.6b)

As can be seen from figure 4, equation (5.23) with (8.6) gives the correct asymptotic expansion
of the Green function. (The exact Green function is given by equation (11.25) of [4] with the
replacement (x, y) → (−y,−x). The V (z) in this example is the same as V (−z) in example 7
of [4].) The series (ik)−2g−2 + g0 + (ik)2g2 + · · · takes a real value when k is real. Although
the exact GS is not real, the imaginary part of it approaches zero faster than any power of k as
k → 0 (see figure 4). Since GS(k) is essentially singular at k = 0, the series

∑∞
n=−1(ik)2ng2n

is asymptotic but divergent.

Example 5.

V (z) = αθ(z − 1) log z, VS(z) = α(α + 2)

4
θ(z − 1)(1/z2) − α

2
δ(z − 1),

where α is a positive constant, and θ denotes the Heaviside step function. (V (z) = 0 for
z < 1.) Since f (z) is discontinuous at z = 1, the Schrödinger potential contains a delta
function at z = 1. Assume that y < 1 < x. From (5.8) we obtain

g−1 = x−α/2, g0 = x−α/2

(
1 − y +

∫ ∞

1

1

zα
dz

)
. (8.7)
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Figure 5. The real and imaginary parts of GS(x, y; k) for the potential of example 5 with α = 3/2,
plotted as functions of k, with x = 1.5 and y = 0.8. The difference between the solid and dashed
lines is �0. Here �0 behaves like kα−1 = √

k as k → 0.

Obviously, g0 is finite if α > 1
(
e−V ∈ F

(+)
0

)
and infinite if α � 1

(
e−V /∈ F

(+)
0

)
. The Green

function for this potential can be exactly obtained as

GS(x, y; k) =
√

x [Jν(kx) − eνπ iJ−ν(kx)] e−ik(y−1)

k {Jν−1(k) + iJν(k) + eνπ i [J1−ν(k) − iJ−ν(k)]} , ν ≡ 1 + α

2
, (8.8)

where Jν is the Bessel function. Since Jν(z) behaves like zν as z → 0 for non-integer ν,
we can see that the asymptotic expansion of (8.8) contains a term proportional to kα−1. If
N + 1 < α < N + 2, then �N ∼ Ckα−1, as explained in section 6 (see figure 5).

Example 6.

VS(z) =
{
a2 (|z| < 1)

0 (|z| > 1),

where a is a constant. This example is to demonstrate the method discussed in section 7. The
zero-energy wavefunctions ψ±

0 for this VS are

ψ−
0 (x) =

⎧⎨
⎩

1
cosh[a(x + 1)]
C1 + C2x,

ψ+
0 (x) =

⎧⎨
⎩

C1 − C2x (x < −1)

cosh[a(x − 1)] (−1 < x < 1)

1 (1 < x),

(8.9)

where C1 ≡ cosh(2a) − a sinh(2a), C2 ≡ a sinh(2a). We obtain V± and f± from (7.2). Let
us consider the case −1 < y < x < 1. Substituting the expressions for V± and f± into (7.6a)
and (7.6b) yields

g0 = −cosh[a(x − 1)] cosh[a(y + 1)]

a sinh(2a)
, (8.10a)

g1 = g0

2a

(
tanh[a(x + 1)] + tanh[a(x − 1)] − tanh[a(y + 1)] − tanh[a(y − 1)] +

1

sinh(2a)

×
{

cosh[a(x − 1)]

cosh[a(x + 1)]
+

cosh[a(x + 1)]

cosh[a(x − 1)]
+

cosh[a(y − 1)]

cosh[a(y + 1)]
+

cosh[a(y + 1)]

cosh[a(y − 1)]

})
.

(8.10b)
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Figure 6. The real and imaginary parts of GS(x, y; k) for the potential of example 6 with a = 1,
plotted as functions of k, with x = 0.5 and y = −0.5.

On the other hand, the exact Green function is obtained by a standard method as

GS(x, y; k) = [(p − ik) ep(1−x) + (p + ik) e−p(1−x)][(p + ik) e−p(1+y) + (p − ik) ep(1+y)]

−4p[(p2 − k2) sinh(2p) − 2ipk cosh(2p)]
,

p ≡
√

a2 − k2. (8.11)

It is not difficult to check that (8.10a) and (8.10b) are the correct coefficients of the expansion.
The higher order coefficients can be calculated by using (7.5) (see figure 6).

9. Summary and remarks

The asymptotic expansion of GS in powers of k is obtained by substituting the expansion of
S into (2.7). Since S = Sr + Sl , we can treat Sr and Sl separately. When V (−∞) is finite
or +∞, the coefficients of the expansion of Sr can be obtained in a simple form for arbitrary
order of k (equations (4.3), (4.6), (4.10) and (4.11)). When V (−∞) = −∞, the expansion
of
(
Sr − 1

2

)−1
, instead of Sr , takes a simple form (equations (4.13) and (4.14)). In a parallel

way, corresponding expressions are obtained for Sl (equations (4.17)–(4.23)). The behavior
of the remainder term, and the validity of the asymptotic expansion, can be studied by using
the expressions (3.16) and (3.21). The result is given by (6.3). For the ‘generic’ case with
VS(x) such that VS(+∞) = VS(−∞) = 0, we need to use a modified method explained in
section 7. In this case, too, the expansion of S to arbitrary order can be obtained in a simple
form (equations (7.5)).

A different method for the low-energy expansion of GS is discussed in [17]. The method
of [17], which does not use the reflection coefficients, is more direct than the method of the
present paper. However, the derivation of the expansion in [17] is formal, and does not provide
a way to estimate the remainder term. Practically, the methods of [17] and the present paper
complement each other. It is a future problem to unify these two methods.

Appendix A. Proof of (2.10)

When a = −∞, the definitions for f̄ and V̄ S (equations (2.2) and (2.8)) read f̄ (x) =
f (x)θ(b − x) and V̄ S(x) = VS(x)θ(b − x), where θ is the Heaviside step function. So,

f̄ 2(x) + f̄ ′(x) = V̄ S(x) − f (b)δ(x − b). (A.1)
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Namely, the Schrödinger potential corresponding to f̄ (equation (1.4) with f → f̄ ) differs
from V̄ S by −f (b)δ(x − b). It is an elementary exercise in quantum mechanics to show
that the transmission coefficient for the Schrödinger equation with the delta function potential
−f (b)δ(x −b) is T0 ≡ 2ik/[2ik +f (b)], and that both the right and left reflection coefficients
are equal to R0 ≡ −f (b)/[2ik + f (b)]. The reflection coefficient for the Fokker–Planck
equation includes the multiple reflections caused by this delta function. We can take the sum
of these multiple reflections as

Rr(b,−∞) = R0 + T 2
0 RS

r (b,−∞)

∞∑
n=0

[
R0R

S
r (b,−∞)

]n = R0 +
T 2

0 RS
r (b,−∞)

1 − R0RS
r (b,−∞)

= −f (b) + [2ik − f (b)]RS
r (b,−∞)

2ik + f (b) + f (b)RS
r (b,−∞)

. (A.2)

From (A.2) we obtain Rr/(1 + Rr) = RS
r

/(
1 + RS

r

)− f/(2ik). The second equation of (2.10)
can be proved in the same way.

Appendix B. Calculation of r̄a
n and r̄b

n

From (3.12) and (3.4) we have

r̄a
0 + ξ(z,W) = − tanh

W − V1

2
+ tanh

W − V (z)

2

= sinh[V1 − V (z)]

sinh[W − V (z)]

(
tanh

W − V1

2
+ tanh

V1 − V (z)

2

)
. (B.1)

Substituting (B.1) into r̄a
1 = L(r̄a

0 + ξ) gives

r̄a
1 (x,W) = 2

∫ x

−∞
dz

∂

∂W

{
sinh[W − V (z)]

[
r̄a

0 + ξ(z,W)
]}

= 2
∫ x

−∞
dz sinh[V1 − V (z)]

∂

∂W
tanh

W − V1

2
= eV1

2 cosh2 W−V1
2

〈−1]x−∞. (B.2)

We can express
(
cosh2 W−V1

2

)−1
as an infinite series in powers of eW and write

r̄a
1 (x,W) = 2

[ ∞∑
m=1

(−1)m+1m em(W−V1)

]
eV1〈−1]x−∞. (B.3)

Let us define the operators

Ĵ (2)
+ ≡ eW

(
1 +

∂

∂W

)
, Ĵ (2)

− ≡ e−W

(
1 − ∂

∂W

)
. (B.4)

Then equation (3.5) can be written as

Lg(x,W) =
∑

σ=±1

∫ x

−∞
eσV (z)Ĵ (2)

−σ g(z,W) dz, (B.5)

where Ĵ (2)
−σ stands for Ĵ (2)

− and Ĵ (2)
+ for σ = +1 and σ = −1, respectively. Substituting (B.3)

into r̄a
n = Ln−1r̄a

1 , and using
∫ x

−∞ dz eσV (z)〈· · ·]z−∞ = 〈. . . , σ ]x−∞, we obtain (3.13) with

Dσ1,σ2,...,σn−1(W) = 2eV1 Ĵ (2)
−σn−1

· · · Ĵ (2)
−σ2

Ĵ (2)
−σ1

∞∑
m=1

(−1)m+1m em(W−V1). (B.6)
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Since Ĵ (2)
−σ enW = (−σ)(n − σ) e(n−σ)W , it is easy to see that

Ĵ (2)
−σn−1

· · · Ĵ (2)
−σ1

emW = P (m)
σ1,...,σn−1

e(m−�)W , (B.7)

with P (m)
σ1,...,σn−1

defined by (3.15). Hence we have (3.14). Expressions of r̄a
n and ρ̄aR

n without
the infinite sum over m can be obtained by carrying out the calculation using the last expression
of (B.2) instead of (B.3).

For the case V (−∞) = +∞, we have sinh[W − V (z)]
[
r̄b

0 + ξ(z,W)
] = eW−V (z) − 1.

Substituting this into r̄b
1 = L

(
r̄b

0 + ξ
)

(see the first line of (B.2)), we have

r̄b
1 = 2

∫ x

−∞
dz

∂

∂W
(eW−V (z) − 1) = 2eW [−1]x−∞. (B.8)

Hence we obtain

r̄b
n (x,W) = 2

∑
{σ1,...,σn−1}

Ĵ (2)
−σn−1

· · · Ĵ (2)
−σ1

eW [−1, σ1, σ2, . . . , σn−1]x−∞. (B.9)

Equation (3.20) follows from (B.9) and (B.7).

Appendix C. Finiteness of r̄a
n and r̄b

n

When V (−∞) = V1 is finite, we have e±V (z) < C and | sinh[V1 − V (z)]| < C|V (z) − V1|
for −∞ � z � x. (Here and hereafter C denotes a constant which may not necessarily be the
same everywhere.) Using these inequalities in (3.2a), we find∣∣〈−1, σ1, σ2, . . . , σn−1]x−∞

∣∣ < C

∫ x

−∞
|V (z) − V1| |z|n−1 dz < ∞ (C.1)

if V − V1 ∈ F
(−)
n−1. From (C.1) it follows that

∣∣r̄a
n

∣∣ < ∞ if V − V1 ∈ F
(−)
n−1.

Next, let us consider equation (3.20) for the case V (−∞) = +∞. Let us assume that
P (1)

σ1,...,σn−1
�= 0, and let {p1, p2, . . . , pM} be a subset of {1, 2, . . . , n − 1} such that σpi

= +1
for each i. Then there exist {q1, q2, . . . , qM} ∈ {1, 2, . . . , n − 1} such that σqi

= −1 and
qi < pi for each i. (Otherwise P (1)

σ1,...,σn−1
= 0, as can be easily seen from (3.15).) If −zpj

is
sufficiently large, V

(
zqj

)
> V

(
zpj

)
. So, exp

[−V
(
zqj

)
+ V

(
zpj

)]
< C for any zqj

< zpj
< x.

We also have exp[−V (z)] < C for any z < x. Therefore,∣∣P (1)
σ1,...,σn−1

[−1, σ1, σ2, . . . , σn−1]x−∞
∣∣ < C

∫ x

−∞
e−V (z)|z|n−1 dz < ∞ (C.2)

if e−V ∈ F
(−)
n−1. From (C.2) it is obvious that

∣∣r̄b
n

∣∣ < ∞ if e−V ∈ F
(−)
n−1.

Appendix D. Proof of (4.13)

We use the rotation of coordinate axes discussed in section VI of [16]. From equations (D.1)
and (D.2) of [16], we have Rr,π,−π/2 = −(Rr,0,−π/2)

−1, where Rr,θ,θ ′ is defined by (10.2b) of
[16]. When V (−∞) = −∞, the Rr(x,−∞) corresponds to Rr,0,−π/2. (Note that θ ′ = −π/2
corresponds to V (−∞) = −∞.) Therefore,

−4

(
Sr − 1

2

)
= 2

1 − Rr,0,−π/2

1 + Rr,0,−π/2
,

(
Sr − 1

2

)−1

= 2
1 − Rr,π,−π/2

1 + Rr,π,−π/2
. (D.1)

Thus, the expression for
(
Sr − 1

2

)−1
has the same form as the expression for −4

(
Sr − 1

2

)
with

θ = π instead of θ = 0. As can be seen from (6.1) and (6.3a) of [16], the rotation with angle
θ = π amounts to changing the sign of V and k. Hence we obtain (4.13).
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Appendix E. Estimation of the remainder term

Here we consider δaR
n and δbR

n , and prove the first halves of (6.2a) and (6.2b). The conditions
for δaL

n and δbL
n can be derived in the same way. Equations (6.2c) easily follow from (6.2b)

by noting that δ
γ R
n−1 = o(kn−1) if δb̃R

n+1 = o(kn+1), and that δb̃R
n is obtained from δbR

n by the
replacement V → −V .

Let us first note that δaR
n = o(kn) and δbR

n = o(kn) hold, respectively, if ρ̄a
n = o(kn)

and ρ̄b
n = o(kn) hold for W = V (x). We can see this by substituting the expansion of

Rr(x,−∞; k) with the remainder term (which is obtained by setting W = V (x) in (3.11) or
(3.18)) into the first equation of (2.5). Here we show, more generally, that ρ̄a

n = o(kn) and
ρ̄b

n = o(kn) hold for any W under the conditions stated in (6.2).
For k = 0, the scattering coefficients can be exactly obtained. (Although equations (2.3)

hold only for k �= 0, we can define the scattering coefficients for k = 0 by taking the limit
k → 0.) We have [16]

τ̄ (x, z;W ; k = 0) = sech
W − V (z)

2
, (E.1a)

R̄l(x, z;W ; k = 0) = −R̄r (x, z;W ; k = 0) = tanh
W − V (z)

2
. (E.1b)

In this appendix, we make use of (E.1) together with the asymptotic expressions of τ̄ and R̄l

given in appendix F.
Now let us derive (6.2a). For the case V (−∞) = V1, we write (3.16) as

ρ̄a
N = (ik)N+1

∑
{σ1,...,σN }

∫ x

−∞
dz A(z, k)〈−1, σ1, . . . , σN−1]z−∞ eσN V (z), (E.2)

where A(z, k) denotes the part containing τ̄ , R̄l , and the sum over m. (We omit to write the
dependence on W .) Equations (E.1) yield

τ̄ 2(x, z; k = 0)

1 − R̄2
l (x, z; k = 0)

= 1,
1 + R̄l(x, z; k = 0)

1 − R̄l(x, z; k = 0)
= eW−V (z). (E.3)

From equations (F.23) and (F.24) of appendix F, and from the fact that C3, C4 and θ in these
equations remain finite as k → 0, we find that

∣∣τ̄ 2
/(

1 − R̄2
l

)∣∣ < C, |(1 + R̄l)/(1 − R̄l)| < C

for −∞ � z � x and |k| < k0 with some k0. (Here, too, we let C denote a constant which
may not necessarily be the same at each appearance.) Using these inequalities in (3.16), we
can see that |A(z, k)| < C. (The infinite sum in (3.16) does not cause any problems. See the
comment above (3.17).) In the same way as in appendix C, it can be shown that∫ x

−∞
dz
∣∣〈−1, σ1, . . . , σN−1]z−∞ eσN V (z)

∣∣ < ∞ (E.4)

if V − V1 ∈ F
(−)
N . Since |A(z, k)| < C, inequality (E.4) means that the absolute value of the

integrand on the right-hand side of (E.2) is dominated by a k-independent function of z which
is integrable in the interval (−∞, x). Therefore, if V − V1 ∈ F

(−)
N , we can interchange the

order of the limit k → 0 and the integral in (E.2) to obtain

lim
k→0

ρ̄a
N

(ik)N+1
=

∑
{σ1,...,σN }

∫ x

−∞
dz A(z, k = 0)〈−1, σ1, . . . , σN−1]z−∞ eσNV (z). (E.5)

Substituting (E.3) into (3.16), and comparing it with (3.13) and (3.14), we find that the
right-hand side of (E.5) is equal to r̄a

N+1. Replacing N → n − 1, we can write (E.5) as

lim
k→0

ρ̄a
n−1

(ik)n
= r̄a

n if V − V1 ∈ F
(−)
n−1. (E.6)
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Since ρ̄a
n−1 = (ik)nr̄a

n + ρ̄a
n , from (E.6) it follows that ρ̄a

n = o(kn), and hence δaR
n = o(kn), as

k → 0 if V − V1 ∈ F
(−)
n−1. (The proof for n = 0 can be done by replacing ρ̄a

n−1 with R̄r , and
using the integral representation of R̄r (x,−∞) (equation (3.16) of [3]).)

If V (z)−V1 ∼ β/|z|α(N < α < N +1) as z → −∞, we can say more about the behavior
of δaR

N as k → 0. In this case 〈−1, σ1, . . . , σN−1]z−∞ ∼ C|z|N−α as z → −∞. From (F.21)
and (F.22) of appendix F, we can see that the leading contribution to the integral of (E.2) has
the form∫ x

−∞
dz A(z, k)〈−1, σ1, . . . , σN−1]z−∞ eσNV (z) = C

∫ x

−∞
dz h(eikz)|z|N−α + · · · , (E.7)

where h is some function. The integral on the right-hand side is convergent if k �= 0. This
integral behaves like 1/kN+1−α as k → 0, as can be seen by changing the integral variable
from z to Z ≡ kz. So we have ρ̄N ∼ Ckα , and hence δaR

N ∼ Ckα , as k → 0.
Let us proceed to (6.2b). For the case V (−∞) = +∞, we write (3.21) as

ρ̄b
N = (ik)N+1

∑
{σ1,...,σN }

∫ x

−∞
dz B(z, k)[−1, σ1, . . . , σN−1]z−∞ eσN V (z), (E.8)

where B(z, k) is the part containing τ̄ and R̄l . Let us temporarily assume that the order of the
limit k → 0 and the integral in (E.8) can be interchanged. Then,

lim
k→0

ρ̄b
N

(ik)N+1
=

∑
{σ1,...,σN }

∫ x

−∞
dz B(z, k = 0)[−1, σ1, . . . , σN−1]z−∞ eσN V (z). (E.9)

Substituting (E.3) into (3.21) and comparing it with (3.20), we can see that the right-hand side
of (E.9) is equal to r̄b

N+1. If e−V ∈ F
(−)
N , then r̄b

N+1 is finite (see appendix C), and so (E.9)
makes sense. With the replacement N → n − 1, equation (E.9) reads

lim
k→0

ρ̄b
n−1

(ik)n
= r̄b

n if e−V ∈ F
(−)
n−1. (E.10)

Since ρ̄b
n−1 = (ik)nr̄b

n + ρ̄b
n , it follows from (E.10) that ρ̄b

n = o(kn), and hence δbR
n = o(kn), as

k → 0 if e−V ∈ F
(−)
n−1.

Now we have only to justify the interchanging of the limit k → 0 and the integral in (E.8).
This is easy if f (−∞) �= 0. When f (−∞) �= 0, the behavior of τ̄ (x, z) as z → −∞ is given
by either (F.9) or (F.16). These equations hold for k = 0, too, since

τ̄ (x, z; k = 0) = 2eW/2 e−V (z)/2[1 + o(1)] (z → −∞), (E.11)

as can be seen from (E.1a). The expressions (F.9) and (F.16) continuously approach (E.11)
as k → 0. Since the quantities η(z, k) and θ(z, k) in (F.9) and (F.16) are o(|z|) as z → −∞,
we have, for |k| < k0 with some k0,

|τ̄ 2(x, z; k)| < C exp[−V (z) + C ′z], (E.12)

where C ′ is a constant which can be chosen arbitrarily small. Considering the behavior of R̄l

given either by (F.10) or (F.17), we see that∣∣∣∣∣ 1

1 − R̄2
l

(
1 + R̄l

1 − R̄l

)1−�
∣∣∣∣∣ = 1

|1 − R̄l|2
∣∣∣∣ 1 + R̄l

1 − R̄l

∣∣∣∣
−�

< C, (E.13)

since � � 0. From (E.13) and (3.21), we find

|B(z, k)| < Cτ̄ 2(x, z; k) e(1−�)V (z). (E.14)
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In the same way as in appendix C, it can be shown that6∣∣[−1, σ1, . . . , σN−1]z−∞ eσN V (z) e(1−�)V (z)
∣∣ < C eV (z)

∫ z

−∞
e−V (w)|w|N−1dw < C|z|N. (E.15)

These inequalities hold as long as e−V ∈ F
(−)
N−1. From (E.12), (E.14) and (E.15) we have∣∣B(z, k)[−1, σ1, . . . , σN−1]z−∞ eσNV (z)

∣∣ < C|z|N exp[−V (z) + C ′z]. (E.16)

Since f (−∞) �= 0, in this case V (z) tends to +∞ linearly or faster as z → −∞. Therefore,
the right-hand side of (E.16) is integrable in the interval (−∞, x). The absolute value of the
integrand of (E.8) is thus dominated by a k-independent integrable function, and this justifies
the interchanging of the limit and the integral.

When V (−∞) = +∞ and f (−∞) = 0 (i.e., when V (z) grows slower than linearly),
we cannot find a k-independent integrable function of z that dominates |τ̄ 2(x, z; k)| as in
(E.12). In this case, the behavior of τ̄ (x, z) as z → −∞ is given by (F.23). However small
k may be, τ̄ (x, z; k) is considerably different from τ̄ (x, z; 0) when −z is large, since (F.23)
is not compatible with (E.11). The crossover of the two different behavior takes place in the
region where |k| � |f (z)|. (This can be known by studying the small-k expansion of τ̄ .)
Let us define zk by |k| = |f (zk)|. (Such zk is uniquely determined when k is sufficiently
small, since we are assuming that f (z) is asymptotically monotone.) Roughly speaking,
τ̄ (x, z; k) � τ̄ (x, z; 0) for z > zk when k is sufficiently small. For z < zk , we need to use
(F.23). The factor C3 in (F.23) is of the order of e−V (zk)/2, since τ̄ (x, zk; k) is of the same
order as τ̄ (x, zk; 0) � C e−V (zk)/2. We can write

τ̄ (x, z; k) = C e−V (zk)/2 exp[−ik(z − zk) + iθ(zk, z, k)][1 + o(1)], (E.17)

where θ is defined by (F.20). We divide the integral in (E.8) as
∫ x

−∞ = ∫ zk

−∞ +
∫ x

zk
. The part∫ x

zk
can be treated in the same way as in the case f (−∞) �= 0. An inequality analogous to

(E.12) holds for z � zk , and it can be shown that limk→0
∫ x

zk
= ∫ x

−∞ limk→0. Let us study the

part
∫ zk

−∞. Equation (E.17) gives7∫ zk

−∞
τ̄ 2(x, z; k)|z|N dz � C e−V (zk)/kN+1 (E.18)

if we neglect the θ(zk, z, k) and the o(1) part of (E.17). (By using (F.18)–(F.21), it can be
shown that the contributions from θ and the o(1) part in (E.17) are indeed negligible in the
limit k → 0.) Using (E.15), (E.17) and (F.24), we can estimate the part

∫ zk

−∞ of (E.8). This is
essentially the same as (E.18), and we have∣∣∣∣

∫ zk

−∞
B(z, k)[−1, σ1, . . . , σN−1]z−∞ eσN V (z)dz

∣∣∣∣ < C e−V (zk)/kN+1. (E.19)

(Also see (E.7) and the explanation below it.) If V (z) ∼ (N + 1) log|z| as z → −∞, then
|zk| ∼ C/|k| as k → 0. Since e−V (zk) ∼ C|zk|−(N+1) ∼ C|k|N+1, the right-hand side of (E.19)
approaches a finite value as k → 0. If e−V ∈ F

(−)
N , then V (z) grows faster than (N + 1) log |z|

as z → −∞, and so the right-hand side of (E.19) vanishes in the limit k → 0. Therefore, the
part

∫ zk

−∞ of (E.8) is negligible as k → 0 if e−V ∈ F
(−)
N , and, since limk→0

∫ x

zk
= ∫ x

−∞ limk→0,

this means that limk→0 and
∫ x

−∞ can be interchanged.
If V (z) ∼ α log |z| (N < α < N + 1) as z → ∞, the inequalities in (E.15) can be

replaced by ‘∼’, and (E.19) gives
∑∫ zk

−∞ B(z, k) · · · dz ∼ Ckα−N−1 (k → 0). We can

6 In appendix F of [3], it is assumed that the quantity on the left-hand side of (E.15) tends to a finite value as
z → −∞, but this is wrong.
7 When Im k = 0, it is necessary to replace k by k + iε and let ε ↓ 0 after evaluating the integral.

26



J. Phys. A: Math. Theor. 41 (2008) 315304 T Miyazawa

also see that
∑∫ x

zk
B(z, k) · · · dz ∼ C

∫ x

zk
|z|−α+N dz ∼ C|zk|−α+N+1 ∼ Ckα−N−1 as k → 0.

(This is obtained by substituting (E.3) into the integrand.) Therefore, from (E.8) we obtain
ρ̄b

N ∼ Ckα , and hence δbR
N ∼ Ckα , as k → 0.

Appendix F. Asymptotic behavior of τ̄ (x, z) and R̄l(x, z) as z → −∞
In this appendix, we study the asymptotic forms of τ̄ (x, z;W ; k) and R̄l(x, z;W ; k) as
z → −∞ for Im k � 0, k �= 0. Details of the derivation are omitted, but let us only mention
that equations (F.5), (F.14), (F.15), (F.21) and (F.22), which are the basic expressions, are
all derived by using equations (3.5)–(3.8) of [16]. We need to consider the three cases, (1)
f (−∞) = ±∞, (2) f (−∞) = c �= 0 and (3) f (−∞) = 0.

(1) f (−∞) = ±∞.
Let us consider the Schrödinger equations

− d2

dz2
ψ±(z) + [∓f ′(z) + f 2(z)]ψ±(z) = k2ψ±(z). (F.1)

The equation for ψ− is identical with (1.1), and the equation for ψ+ is the Schrödinger equation
corresponding to the inverted Fokker–Planck potential −V . We set

ψ±(z) ≡ exp

[
1

2
V (z) +

∫ z

p̃+(w, k) dw

]
, (F.2)

and substitute into (F.1). This gives the nonlinear differential equations

∂

∂z
p̃±(z, k) ∓ 2f (z)p̃±(z, k) + [p̃±(z, k)]2 = −k2. (F.3)

It is easy to see that these equations have solutions satisfying the asymptotic conditions

p̃±(z, k) = ± k2

2f (z)
[1 + o(1)] as z → −∞. (F.4)

We can express the scattering coefficients in terms of these solutions p̃± as

τ(x, z; k) = 1/α+, Rl(x, z; k) = −β−/α+, (F.5)

α+ ≡ 1

2[k2 + p̃+(x, k)p̃−(x, k)]
{[k + ip̃−(x, k)][k − ip̃+(z, k)] e(1/2)[V (z)−V (x)]−η+

+ [k + ip̃+(x, k)][k − ip̃−(z, k)] e(1/2)[V (x)−V (z)]−η−},
β− ≡ 1

2[k2 + p̃+(x, k)p̃−(x, k)]
{[k + ip̃−(x, k)][k + ip̃+(z, k)] e(1/2)[V (z)−V (x)]−η+

− [k + ip̃+(x, k)][k + ip̃−(z, k)] e(1/2)[V (x)−V (z)]−η−}

(F.6)

where η± ≡ ∫ x

z
p̃±(w, k) dw. (The symbols α+ and β− are in accordance with the notation

used in section III of [16].) If f (−∞) = +∞, then V (−∞) = +∞, and (F.5) gives the
asymptotic behavior of τ(x, z; k) as z → −∞

τ(x, z; k) = C(x, k) exp

[
−1

2
V (z) + η(z, k)

]
[1 + o(1)] , (F.7)

η(z, k) ≡
∫ z0

z

p̃+(w, k) dw = k2

2

∫ z0

z

1

f (w)
dw[1 + o(1)], (F.8)
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where z0 is a constant. The generalized transmission coefficient τ̄ (x, z;W ; k) is the
transmission coefficient for the potential that has a jump at the right end point x (see [16]). So
it is obvious that τ̄ has the same asymptotic form as (F.7). The expression for R̄l is also the
same as that for Rl . We have

τ̄ (x, z;W ; k) = C1(x,W, k) exp

[
−1

2
V (z) + η(z, k)

]
[1 + o(1)] , (F.9)

R̄l(x, z;W ; k) = −1 − ik

f (z)
[1 + o(1)] . (F.10)

From (F.8) we can see that η(z) = o(|z|) as z → −∞. If 1/f ∈ F
(−)
0 , then η(−∞, k) is

finite, and so we may let η = 0 in (F.9) by including eη(−∞,k) in C1. Since limk→0 p̃± = 0,
we have C(k = 0) = eV (x)/2, C1(k = 0) = 2eW/2 and η(z, k = 0) = 0.

The results for the case f (−∞) = −∞ can be obtained in the same way. The asymptotic
expressions for τ̄ and R̄l are obtained by replacing V with −V in (F.9), and by changing the
sign of the first term on the right-hand side of (F.10).

(2) f (−∞) = c.
We consider the second-order differential equation

− d2

dz2
ψ(z) + f 2(z)ψ(z) +

f ′(z)
f (z)

[
d

dz
ψ(z) − ikψ(z)

]
= k2ψ(z). (F.11)

(This is the equation satisfied by the quantities α+(x, z) and β+(x, z) defined in section III of
[16], as functions of z with fixed x.) We set ψ(z) ≡ exp

[∫ z
q(w, k) dw

]
, and substitute into

(F.11). This yields the differential equation

∂

∂z
q(z, k) − f ′(z)

f (z)
q(z, k) + q2(z, k) = f 2(z) − k2 − f ′(z)

f (z)
ik. (F.12)

Suppose that k2 �= c2. (Since we are interested in the region of small k, we need not consider
the case k2 = c2.) Then equation (F.12) has a solution that tends to −√

c2 − k2 as z → −∞.
Let us define, in terms of this solution q(z, k),

p(z, k) ≡ q(z, k) +
√

c2 − k2, s(z, k) ≡ [ik − q(z, k)]/f (z),

γ (x, z, k) ≡ 1

2

∫ x

z

[p(w, k) + p(w,−k)] dw,

θ(x, z, k) ≡ 1

2i

∫ x

z

[p(w, k) − p(w,−k)] dw,

�(x, z, k) ≡ i
√

c2 − k2(x − z) + θ(x, z, k).

(F.13)

Then we have

τ(x, z; k) = 1 − s(x, k)s(x,−k)

1 − s(x, k)s(z,−k) e2i�(x,z,k)
ei�(x,z,k)+γ (x,z,k), (F.14)

Rl(x, z; k) = −s(z, k) + s(x, k) ei�(x,z,k)

1 − s(x, k)s(z,−k) e2i�(x,z,k)
. (F.15)

We can show from (F.12) that p(z, k) = B(k)[f (z) − c][1 + o(1)] as z → −∞, where B(k)

is some z-independent quantity. Since p(z, k) is o(1) as z → −∞, obviously both γ (x, z, k)

and θ(x, z, k) are o(|z|) as z → −∞. It is not difficult to show that, in fact, γ (x,−∞, k)
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is finite. Note also that limz→−∞ s(z, k) = (ik +
√

c2 − k2)/c. As long as
√

c2 − k2 has a
nonzero real part, ei�(x,z,k) vanishes in the limit z → −∞, and we obtain

τ̄ (x, z;W ; k) = C2(x,W, k) exp[
√

c2 − k2z + iθ(z, k)][1 + o(1)], (F.16)

R̄l(x, z;W ; k) = −1

c
(ik +

√
c2 − k2) + o(1), (F.17)

where θ(z, k) ≡ θ(z0, z, k) with a fixed constant z0. This θ(z, k) is o(|z|) as z → −∞. The
expressions for τ and Rl are of the same forms, with W replaced by V (x).

(3) f (−∞) = 0.
Substituting ψ(z) ≡ exp

[
ikz +

∫ z
p(w, k) dw

]
into (F.11) yields the differential equation

∂

∂z
p(z, k) +

[
2ik − f ′(z)

f (z)

]
p(z, k) + p2(z, k) = f 2(z). (F.18)

This equation has a solution that has the asymptotic form, as z → −∞,

p(z, k) = 1

2ik
f 2(z)[1 + o(1)] if lim

z→−∞
f ′(z)
f (z)

= 0, (F.19a)

p(z, k) = 1

b + 2ik
f 2(z)[1 + o(1)] if lim

z→−∞
f ′(z)
f (z)

= b, (F.19b)

p(z, k) = −1

2
f (z)[V (z) − V (−∞)][1 + o(1)] if lim

z→−∞
f ′(z)
f (z)

= ∞. (F.19c)

(Recall that f ′(z) is monotone for sufficiently large |z|, by our assumption. The right-hand
side of (F.19b) is replaced by zf 2(z)[1 + o(1)] when b + 2ik = 0.) Let p stand for the solution
specified by (F.19). Just like (F.13), we define

s(z, k) ≡ −p(z, k)/f (z), γ (x, z, k) ≡ 1

2

∫ x

z

[p(w, k) + p(w,−k)] dw,

θ(x, z, k) ≡ 1

2i

∫ x

z

[p(w, k) − p(w,−k)] dw.

(F.20)

Then we have

τ(x, z; k) = 1 − s(x, k)s(x,−k)

1 − s(x, k)s(z,−k) e2i[k(x−z)+θ(x,z,k)]
eik(x−z)+iθ(x,z,k)+γ (x,z,k), (F.21)

Rl(x, z; k) = −s(z, k) + s(x, k) e2i[k(x−z)+θ(x,z,k)]

1 − s(x, k)s(z,−k) e2i[k(x−z)+θ(x,z,k)]
. (F.22)

From (F.19) it follows that s(z,±k) = o(1) as z → −∞. It is not difficult to see that
γ (x,−∞, k) is finite. So (F.21) and (F.21) yield the asymptotic forms as z → −∞

τ̄ (x, z;W ; k) = C3(x,W, k) exp[−ikz + iθ(z, k)][1 + o(1)], (F.23)

R̄l(x, z;W ; k) = C4(x,W, k) exp[−2ikz + 2iθ(z, k)] + o(1), (F.24)

where θ(z, k) ≡ θ(z0, z, k) with a constant z0. This θ(z, k) is o(|z|) as z → −∞. If
f 2 ∈ F

(−)
0 , then θ(−∞, k) is finite, and we may let θ = 0 in these expressions by including

eiθ(−∞,k) in C3. The expressions for τ and Rl have the same forms as (F.23) and (F.24), with
W replaced by V (x).
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Appendix G. The existence of Rr(x, − ∞; k)

We defined the reflection coefficients for semi-infinite intervals as Rr(x,−∞; k) ≡
limy→−∞ Rr(x, y; k). (For Im k = 0, the limit ε ↓ 0 of k + iε is implied when necessary, as in
(2.4).) Here we show that such a limit exists for Im k � 0 (the existence of Rl(∞, y; k) can
be shown in the same way). We use the integral representation [16, 18]

Rr(x, y; k) =
∫ x

y

f (z)τ 2(x, z; k) dz (G.1)

and the asymptotic form of τ(x, z; k) as z → −∞ given in appendix F. For k = 0, we have
exactly Rr(x, y; k = 0) = tanh{[V (y) − V (x)]/2} (see (E.1)). We can let y → −∞ in this
expression (see (3.7)). In the following, we assume that k �= 0.

First, we consider the case f (−∞) = +∞. Substituting (F.7) into (G.1) gives

Rr(x, y; k) = C2(x, k)

∫ x

y

f (z)[1 + h(z)] e−V (z)+2η(z,k)dz, (G.2)

where h(z) = o(1) as z → −∞. Since f (z) = −(1/2)(d/dz)V (z),∫ x

y

f (z) e−V (z)+2η(z) dz = −1

2
e−V (y)+2η(y) +

∫ x

y

η′(z) e−V (z)+2η(z) dz + C, (G.3)

where C is independent of y. In this case, V (z) tends to +∞ faster than |z|. From appendix F
we know that η(z) = o(|z|) and η′(z) = o(1) as z → −∞. So the first term on the right-hand
side of (G.3) vanishes, and the second term is convergent, as y → −∞. It is obvious that the
part including h(z) in (G.2) is also convergent as y → −∞, since the integrand decays even
faster. Therefore, the limit y → −∞ of Rr(x, y; k) exists, irrespective of whether Im k > 0
or Im k = 0. The argument is the same for the case f (−∞) = −∞.

Next, let us consider the case f (−∞) = 0. We write (F.21) as

τ(x, z; k) = B e−i[kz−θ(z)]+γ (z)

1 − u(z) e−2i[kz−θ(z)]
(G.4)

explicitly writing only the dependence on z, with u(z) ≡ s(z,−k)s(x, k) e2ikx and B ≡
[1 − s(x, k)s(x,−k)] eikx . If Im k > 0, then τ(x, z; k) falls off exponentially as z → −∞,
and it is easy to show that (G.1) has the limit y → −∞. So, let us assume that Im k = 0.
If Im k = 0, the quantities θ(z) and γ (z) (defined by (F.20)) are real-vaued functions
of z, since p(z,−k) = [p(z, k)]∗. By our assumption, f (z) and f ′(z) are monotone
for sufficiently large |z|. From (F.18) and (F.19) it follows that p(z,±k), and hence
γ (z), θ(z), θ ′(z), Re u(z), Im u(z), are all monotone for sufficiently large |z|. As can be
seen from appendix F,

θ(z) = o(|z|), θ ′(z) = o(1),

γ (z) = O(1), u(z) = o(1) as z → −∞.
(G.5)

We divide the integral of (G.1) in two parts as
∫ x

y
= ∫ x

y0
+
∫ y0

y
with some y0, and substitute

(G.4) into the second part. Then∫ y0

y

f (z)τ 2(x, z; k) dz = B2
∫ y0

y

f (z) e2γ (z)

( ∞∑
n=0

nun(z) e−2(n+1)i[kz−θ(z)]

)
dz. (G.6)

Here we have expressed τ 2 as a power series in terms of u. This infinite series is convergent
if −y0 is chosen to be sufficiently large. Let us define

In ≡ nB2
∫ y0

y

f (z) e2γ (z)un(z) e−2(n+1)i[kz−θ(z)] dz. (G.7)
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Setting Z ≡ z − [θ(z)/k], we can write

In = nB2
∫ z=y0

z=y

A(Z) e−2(n+1)ikZ dZ, A(Z) ≡ f (z) e2γ (z)un(z)

1 − [θ ′(z)/k]
. (G.8)

Since f (z), γ (z), u(z), θ ′(z) are all asymptotically monotone, there exists a number w such
that A(Z) is monotone for z < w, and from (G.5) we see that A(Z) → 0 as z → −∞. Let
us take y0 < w. Then, using the second mean value theorem of integral calculus, we find

|Re In| < 2

∣∣∣∣B2 f (y0) e2γ (y0)

k − θ ′(y0)

∣∣∣∣ |u(y0)|n, |Im In| < 2

∣∣∣∣B2 f (y0) e2γ (y0)

k − θ ′(y0)

∣∣∣∣ |u(y0)|n. (G.9)

When y is finite, term-by-term integration is permissible on the right-hand side of (G.6). The
infinite series

∑∞
n=0 In is convergent and is equal to the left-hand side of (G.6). Taking the

sum of (G.9) over n, we obtain∣∣∣∣Re
∫ y0

y

f (z)τ 2(x, z; k) dz

∣∣∣∣ < 2

∣∣∣∣B2 f (y0) e2γ (y0)

k − θ ′(y0)

∣∣∣∣ 1

1 − |u(y0)| , (G.10)

and similarly for the imaginary part. (We are taking −y0 to be sufficiently large so that
|u(y0)| < 1 and also k > θ ′(y0).) The right-hand side of (G.10) is independent of y, and
vanishes as y0 → −∞. Therefore, the limit y → −∞ of (G.6) exists. Hence it is obvious
that limy→−∞ Rr(x, y; k) exists.

The case f (−∞) = c �= 0 can be studied in the same way, using (F.14) instead of (F.21).
If Re

√
c2 − k2 �= 0, then τ(x, y; k) falls off exponentially as y → −∞, and it is easy to show

the existence of the limit y → −∞ of (G.1). If k is real and k2 > c2, the right-hand side
of (G.1) oscillates as y → −∞ and does not converge. In order to make the integral have a
definite value, it is necessary to assume that k has an infinitesimal imaginary part iε. Then
limε↓0 limy→−∞ of (G.1) exits, as can be seen from the fact that the following limit exists:

lim
ε↓0

lim
Y→−∞

∫ X

Y

e−2iKZ+εZ

(1 − a e−2iKZ+εZ)2
dZ = −e−2iKX

2iK(1 − a e−2iKX)
. (G.11)

(Apart from a constant factor, the integrand on the left-hand side of (G.11) is the asymptotic
form of f (z)τ 2(x, z; k) as z → −∞, where K ≡ √

k2 − c2 and Z ≡ z − [θ(z)/K]. The
remaining part of f (z)τ 2(x, z; k) vanishes as z → −∞, and its integral converges more
rapidly.) In this paper, however, we need not be concerned with the case k2 > c2, since we
are studying the small-k expansion. The case k2 = c2 is not discussed here, since we do not
need this case either.
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Corrigendum

Low-energy asymptotic expansion of the Green function for one-dimensional
Fokker-Planck and Schrödinger equations
Toru Miyazawa 2008 J. Phys. A: Math. Theor. 41 315304

There is an error in the definition of the transmission coefficient (equations (2.3)). The
transmission coefficient τ in (2.3a) and (2.3b) should be multiplied by e[V (b)−V (a)]/2 and
e−[V (b)−V (a)]/2, respectively. Without this correction, the functions φ1 and φ2 defined by (2.3)
are solutions of the Schrödinger equation, not the Fokker–Planck equation.

The same error occurs in the corresponding equations in the previous series of papers
(equations (1.6) of [1], equations (3.2) of [2], and equations (2.10) of [3]). The functions
defined by these equations should be interpreted as solutions of the Schrödinger equation
instead of the Fokker–Planck equation. Otherwise, there should be a factor e[V (x2)−V (x1)]/2 (for
x < x1) or e−[V (x2)−V (x1)]/2 (for x > x2) in front of τ(x2, x1; k). This error does not affect any
of the results of this paper or these previous papers.

References

[1] Miyazawa T 2006 J. Phys. A: Math. Gen. 39 7015
[2] Miyazawa T 2006 J. Phys. A: Math. Gen. 39 10871
[3] Miyazawa T 2007 J. Phys. A: Math. Theor. 40 8683

1751-8113/10/049801+01$30.00 © 2010 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/43/4/049801

	1. Introduction
	2. Reflection coefficients and the Green function
	3. Formulae for generalized reflection coefficients
	4. The low-energy
	5. Low-energy expansion of the Green function
	6. Behavior of
	7. Schrödinger
	8. Examples
	9. Summary and remarks
	Appendix A. Proof of (2.10)
	Appendix B. Calculation
	Appendix C. Finiteness
	Appendix D. Proof of (4.13)
	Appendix E. Estimation of the remainder term
	Appendix F. Asymptotic behavior
	Appendix G. The existence of
	References

